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Abstract

An efficient inclusion test for a massive distribution of spatial points with

a close boundary is described for two-dimensions and three dimensions. Uti-

lizing a background mesh and the wall-sharing relationship between cell walls,

the cost of the proposed algorithm is a small fraction of a full inclusion test.

Intersections of simple planar geometrical objects locally are the only mathe-

matical operations required.

1 INTRODUCTION

Testing if a given point is enclosed in a closed boundary is a classical problem
in computational geometry (figure 1), it has many applications in computational
mathematics / physics. Various algorithms exist for solving this problem, some of
them are elegant and easy to code [4],[5]. In general an algorithm to test inclusion
involves intersection of rays and boundary faces, or projection to boundary faces,
and calculation of angle / solid angle spanned by a point and boundary faces. Almost
every algorithm requires to test through every boundary faces. If there are massive
points to test against a boundary with a great many faces, the cost of testing is
certainly a consideration to software developers.

In this paper, an efficient approach of inclusion test for a massive point distri-
bution with an arbitrary closed boundary represented by faces is described. This
method does not test every boundary face for every node, instead it only tests near
boundary nodes and for each node in consideration, only the boundary portion local
to this node is examined. Assume there are N points to test against a boundary
with M faces, the cost for intersection / projection is reduces from O(MN) to a
small fraction of it. This fraction is determined by the ratio between the volume of
the average area (length on 2D) of a boundary face, multiplied by a characteristic
length, to the volume of the region in the problem. This fraction is considerably
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Figure 1: A two-dimensional inclusion problem.

small and mathematically can go to zero. The compensation is additional storage of
an array in d+1 dimensions with d the dimension of space. The volume of the array
is the volume of the region in concern divided by the volume of a single cube. Only
local intersections between basic geometrical objects are required for the algorithm
to work.

The solution approach in three-dimensions is a direct extension of the two-
dimensional solution method proposed here, thus only the two-dimensional solution
is demonstrated with figures in this article.

This method is natural to parallelize and should fit X-scale calculations well.

2 DESCRIPTION OF THE ALGORITHM

2.1 DEFINITION OF THE PROBLEM

A point set of N points is randomly distributed in space (two-dimensional or three-
dimensional). A non self-intersecting closed boundary is represented by a set of
planar faces defined by a set of nodes ordered counter-clock-wise, thus by a right-
hand rule, the normal is pointing exterior in the three-dimensional case, and the the
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Figure 2: Boundary representation with planar faces.

interior in on the left in the two-dimensional case.

The questions is that how to identify for the whole point set that which of the
points are interior, which are exterior.

2.2 THE CHARACTERISTIC LENGTH

The solution approach in three-dimensions is a direct extension of the two-dimensional
solution method proposed here, thus only the two-dimensional solution is described
in this article. Nevertheless the 2D algorithm can be directly extended to 3D.

It is assumed that the size of boundary faces are not ill-conditioned, i.e., the
ratio between the longest face and the shortest face is not too big. However even
this assumption is not satisfied, the proposed method would still work with only
minor increment of effort. We take a length ℓc to scale the problem. This means,
without loss of generality ℓc is scaled to 1 after the problem is nondimensionalized.

Furthermore for convenience the origin can be set at (x0, y0) = (xMin, yMin)
where xMin and yMin are the lower bounds of the coordinates of the point set.
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2.3 THE VIRTUAL CUBICAL COMPLEX

Assume the problem has been scaled by ℓc in space.

The entire computational therefore is contained in a Cartesian grid, or a virtual
cubical complex (fig. 3). Imagine the unit square defined by diagonals (i, j), (i +
1, j+1) be virtual cubical (i, j), each of the given point p = (x, y) must be contained
in such a cube. The cube ID that owns p is simply the integer parts of x and y (fig.
4).

It is evident that if the boundary presents a normal body, only a small number
of these virtual cubes will intersect the boundary. To be quantitative, because only
a single band of cubes contains the boundary (fig. 5), which makes the number
of cubes intersect the boundary the order of the volume Aℓc, where A is the area
(length in 2D) of the boundary. Therefore about only O(Alc/V ) (the volume of the
narrowband that covers the boundary curve divided by the volume of the region
of computational domain) of the cubes intersect the boundary. In the limit that
the characteristic length ℓc → 0, the number of boundary cells is of higher order.
However, the smaller the ℓc, the higher the storage required so there is a balance of
computational efficiency and data storage. Nevertheless, with the proposed method
the real work is done with the boundary cubes only, locally. This feature makes the
proposed method efficient.

2.4 BOUNDARY, INTERIOR, AND EXTERIOR VIRTUAL

CUBES

The virtual cubical complex can be ”colored” such that one can identify the interior,
the boundary, and the exterior cubes with their colors. Say each interior virtual cube
is colored green, each boundary virtual cube is colored yellow, and each exterior
virtual cube is colored blue (fig. 4). A point contained by a green cube must be
interior, a point contained by a yellow cube maybe either interior or exterior, finally,
a point contained in a blue cube must be exterior. We only need to deal with points
contained in a yellow (boundary) cube. The next question is how to color the virtual
cube complex. The approach here is to identify the boundary cubes first, then use
the cube wall-sharing relation to find “pure” cubes (to be colored either blue or
green) neighboring to “mixed” cubes (colored yellow).

A virtual cube class has three properties: its i coordinate, its j coordinate, and
its color. An class-array with the length of the total number of virtual cubes can
be used to hold the virtual cube complex.
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Figure 3: The virtual cubical complex.

i = (int) x
j = (int) y

;

.

(x , y )

Figure 4: A point (x, y) is contained by virtual cube (i, j) with i = (int)x, j = (int)y.
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Figure 5: The interior, boundary, and exterior cubes.

2.5 IDENTIFY THE BOUNDARY CUBES

It is straightforward to identify boundary (mixed) nodes.

2.5.1 The first step

Pick an arbitrary boundary node n, the integer parts of its physical coordinate
(in, jn) shall provide the ID of a mixed cube that contains this node. One starts
a directional walking [3] from this node alone the boundary with right hand side
toward the boundary normal until arrive at one of the four walls of the cube (in, jn).
At this moment, paint the cube (in, jn) yellow (fig. 6).

2.5.2 The second step

Continue the walk across the wall to enter next cube, then keep walking till arrive
at another wall of this cube, mark this cube yellow.
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j = (int) y.

i = (int) x;

(x, y)

Figure 6: The directional walk on boundary starts from the node n contained the
lower right cube. The ID of this cube then is then (i, j) with in = (int)xn, jn =
(int)yn, (xn, yn) is the physical coordinate of node n. Circled filled with yellow are
boundary nodes, triangles mark the points that the boundary enters / exits the walls
of the cubical complex. The boundary is represented by red line-segments and the
arrows mark the direction of walk (interior on the left).
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Figure 7: Identify boundary cubes with a directional walk in 2D.

2.5.3 repeat the second step until starting node is revisited

If there is only a single surface, because of continuity of the boundary, when the
starting boundary node is revisited, all the cubes that contains a piece of the bound-
ary is painted yellow. All cubes left that are not yellow, are “pure” cubes that are
either interior or exterior. In three-dimensions, one also starts from a boundary node
n and identify the cube ID (in, jn, kn) as the integer parts of its physical coordinates.
Then find the first level of neighbor cubes that contain pieces of the boundary, then
keep propagating this search to the second level of mixed neighbor cubes, repeating
until the entire surface has been completely covered.

The case of multiple boundaries does not add complexity to the above procedure.

2.6 IDENTIFY THE PURE CUBES WITH WALL-SHARING

A point contained by an interior cube is interior, a point contained by an exterior
cube is exterior, once the interior and exterior cubes are identified. The question is
how to know if a pure cube is interior (or exterior)? We can achieve this using the
narrowband of boundary cubes identified. We “paint” the cubes with a wall-sharing

relationship.
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It is evident that the inner boundary of the narrowband of “mixed” cubes are
a collection of walls of pure green cubes, and the outer boundary are a collection of
walls of pure blue cubes. We make a collection of all faces that are green which is a
closed surface that enclose all the interior cubes.

We mark all the yellow cubes 0 for their logical distance to the boundary are
zeros. With looping over the set of green faces and find the cubes that share
green walls with the cubes marked 0, mark all the cubes found with their logical
distance to the boundary 1. Then the boundary of these cubes with mark 1 encloses
the rest of interior cubes. Repeating this collecting / marking operation with the
logical distances to the boundary, utilizing the wall sharing relationship (the spatial
continuity) until no cube with a larger logical distance to the boundary can be found.
At this moment, all interior cubes are marked with a positive integer (fig. 8).

The above operation can be seen as a loop over the level of neighbors (logical
distances to the boundary). Not a single interior cube will be missed because if so,
the wall-sharing relation will be broken, this is against spatial continuity.

Exterior cubes can be ranked with their logical distance to the boundary (say,
with negative integers) the same way. However it is unnecessary because one can
take the default status of cubes as exterior initially (painted blue).

2.7 PUTTING POINTS INTO VIRTUAL CUBES

With a single loop over the given massively distributed point set, each point (xn, yn)
will be contained in to the cube with its ID [(int)xn, (int)yn]. Any point that in
owned by an interior cube is interior, any point that is owned by an exterior cube
is exterior. The only thing left is that: how to determine if a point owned by a
mixed cell is exterior or interior?

Nevertheless, the whole problem which is global is broken into a set of problems
of a single point inside a mixed cube, for the case of a massive distribution of points.
The method is a collection of completely local inclusion tests so is easy to parallelize.

2.8 BOUNDARY CONFIGURATIONS IN A MIXED CUBE

This is the last step and maybe the most challenging part with this algorithm. To
make the problem here simpler to deal with, we go back to the phase of identifying
the mixed cubes. It is clear that once a cube is found being mixed, the surface faces
that intersect this cube are known, this information needs to be kept all the way
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Figure 8: Painting pure virtual cubes with a loop over their logical distances to the
boundary.

through till here. It will give the information about which portion of the walls of a
cube is interior / exterior.

Because for every mix cube, the boundary faces intersect the cell are know, one
can perform the intersection of a collection of faces with the wall of this cube (4
walls in two-dimensions and 6 walls in three-dimensions). This operation involves
only intersection of line-segments (in 2D) or planar polygons (in 3D) and is not at
all hard to perform (all the functions needed for these intersections are coded in
ALE3D and tested, ready to update).

Some configurations of mix cells intersecting a two-dimensions virtual cube are
demonstrated in figure 7. In later sections it will be shown that the complexity of a
local inclusion test does not depend on the configuration.

2.9 DETERMINE IF A POINT IS INTERIOR IN A MIXED

CUBE

This task is easier, although a local inclusion test can be conducted for a given
point and the interior portion of a mixed cube, we can do simpler things. Just find
an interior (or exterior) point on the walls of the cube, link it to the given point.
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Figure 9: Several ways for a boundary to intersect a two-dimensional virtual cube.

Because a cube is convex this line-segment shall be completely inside the cube. Then
one counts the number of intersection between this line-segment and the boundary
faces that intersect the cube. If the count is odd, the point is interior, if even the
point is exterior (fig. 10).

One can pick ℓc as the smallest dimension of a boundary face (assume no ex-
tremely short edge existing), this would simply the searching-intersecting tests as-
sociated with this method because for each piece of boundary contained in a mix
cube, there is at most a single boundary node on it.

Therefore by looping over all boundary cubes and identify for each cube the
points contained in are interior / exterior, or on boundary, we have the solution of
an inclusion test for a massive distribution of points in two-dimensions and three-
dimensions.

2.10 THE COST OF THE PROPOSED ALGORITHM

The cost of this algorithm depends on the characteristic length ℓc that is used to
scale the problem. Assume the point set P is a random distribution of N points
in spatial region of volume V, and the total volume of the narrowband boundary
cubes regarding the boundary B (defined by M planar faces, say) is MAℓc with
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Figure 10: Point P contained in the virtual cube shown is linked with a point Q
known to be interior (green) on the wall of the cube, by a line-segment. PQ crossed
the boundary 6 times (crossing points are marked by letter C), and six is even, thus
P is interior. A three-dimensional case is similar.

A being the average area of each face. The number of cubes that contain the
boundary is then in the order of p = O(MA/ℓd−1

c ), where d is the dimensionality
of the problem. The number of total cubes is V/ℓd

c , therefore in average a cube
contains q = Nℓd

c/V points. The total local inclusion test with the boundary cubes
are then O(pq) = O(MNAℓc/V ). Recall that performing N single inclusion tests
requires O(MN) tests, the cost with the new method is Aℓc/V of the former. Since
the narrowband volume MAℓc is usually small compared to the volume of the region
of interest, and the fraction is M−1 of it, the saving on cost is significant. Be aware
that the cost is directly proportional ℓc the thickness of the narrowband of boundary
cubes, as ℓc → 0, the saving can be close to 100%.

Additional costs mainly come from the directional walking to find mixed cells
(with a cost of MA/ℓd−1

c , not related to N , plus an insignificant overhead cost for
painting the pure cells, and looping over all points to find the integer parts of their
physical coordinates.
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3 CONCLUSION

The inclusion test for a massively distributed point set is scaled with a characteristic
length of choice, and broken into local inclusion tests in a narrowband of virtual
cubes that contains the boundary. By effectively painting the virtual cubes with
colors (yellow for boundary, green for interior, blue of exterior), the integer parts
of the physical coordinate of a point determines if a point is interior for interior
cubes, exterior for exterior cubes, or to be determined for boundary (mixed) cells.
Simplified local inclusion tests are performed for only the points that are contained
by the mixed cubes. The saving of cost compared to full test is significant. The
mathematical technique required for the algorithm is finding intersections of a spatial
polygon and a spatial unit square (in 3D) and a line-segment, or intersection of line
segments (in 2D) for a boundary represented with planar faces. The wall-sharing
relationship of cells is utilized to paint the boundary cubes, and the interior cubes
with a loop over the logical distance to the boundary for eliminating inclusion tests
of most points (that are contained in pure cubes).
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